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We have previously shown that during top-down attentional modulation (stimulus expectation) correlations of the 
beta signals across the visual cortex were uniform, while during bottom-up attentional processing (visual 
stimulation) their values were heterogeneous. These different patterns of attentional beta modulation may be caused 
by feed-forward lateral inhibitory interactions in the visual cortex, activated solely during stimulus processing. To 
test this hypothesis we developed a large-scale computational model of the cortical network. We first identified the 
parameter range needed to support beta rhythm generation, and next, simulated the different activity states 
corresponding to experimental paradigms. The model matched our experimental data in terms of spatial 
organization of beta correlations during different attentional states and provided a computational confirmation of 
the hypothesis that the paradigm-specific beta activation spatial maps depend on the lateral inhibitory mechanism. 
The model also generated testable predictions that cross-correlation values depend on that distance between the 
activated columns and on their spatial position with respect to the location of the sensory inputs from the thalamus. 

Keywords: beta frequency band, attention, visual cortex, computational model. 

 

1. Introduction  

There is accumulating evidence that beta range 
oscillations, generally defined as 14–30 Hz, are linked 
to purposeful mental activity. Beta activity has been 
primarily associated with attention processes and 
increased vigilance1-7 but has also been implicated in 
motor behavior8-10 sensorimotor decision making,11-13 
language processing,14 learning,15 and the maintenance 
of the current sensorimotor or cognitive state.16 These 
different functions are accompanied by power changes 
in beta signals within local circuits and the modulation 
of network interactions occurring within the beta 

frequency range.17, 18 Recently, we investigated the 
spatiotemporal patterns of beta activity, in a sub-range 
of 16-24 Hz, using local field potential (LFP) imaging,19 
in the primary visual cortex of cats that performed 
bottom-up and top-down attentional tasks. We showed 
that during both tasks the beta power increased but its 
spatiotemporal organization across cortical sites varied 
distinctively. A stimulus-driven bottom-up task 
produced a spatially heterogeneous beta activity 
correlation pattern while an anticipatory top-down task 
led to spatially homogenous beta correlations. We 
hypothesized that during bottom-up attention tasks, the 
columns of the primary cortex, which are involved in 
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processing of a stimulus, exhibited strong beta activity, 
while neighboring columns, which are suppressed by 
lateral inhibitory mechanisms, exhibited weaker beta 
signals. Activated columns could account for higher 
inter-column correlations, while pairs of suppressed (or 
activated-suppressed) columns presumably led to lower 
correlations. On the contrary, in the top-down 
attentional paradigm, columns of the primary cortical 
areas are assumed to be activated more uniformly by 
top-down diffuse beta modulatory signals, leading to 
similar inter-column correlation values. The aim of the 
present research is to complete our previous study19 
using computer simulations that are set up to test the 
proposed neurophysiological mechanism. Accordingly, 
we developed a large-scale computational model of the 
cortical network consisting of Hodgkin-Huxley neurons 
and the basic connectivity of the primary visual cortex. 
Using the model, we first investigated the conditions 
that are suitable for the emergence of beta band 
rhythms. Next, we simulated the conditions for bottom-
up and top-down attentional states and the 
corresponding spatial patterns of their beta correlations. 
We have shown that sensory input together with the 
lateral inhibitory mechanism might account for the 
heterogeneous pattern of the spatial beta correlations, 
while anticipatory activation from the higher order 
cortical centers might result in spatially homogenous 
excitation. Furthermore, the model generates testable 
predictions that distance between the activated columns 
and their spatial position with respect to location of the 
sensory inputs from the thalamus are main factors 
shaping beta cross-correlations between the cortical 
recording sites. 

2. Experimental data 

The LFP signals were recorded from the primary visual 
cortex of seven cats. The animals were trained using 
two attentional paradigms: stimulus-driven and 
anticipatory (see Ref. 19 for details). During the 
experiments the animals were placed in an experimental 
box and performed visual and auditory spatial 
discrimination tasks in a randomly intermingled order. 
In the stimulus driven (bottom-up) paradigm, a moving 
light bar or a loudspeaker producing white noise were 
produced behind a front wall with two feeding doors. 
The 12–20 trials (each lasting 10–20 s) for each 
modality were executed in daily sessions. The animal 
was required to remember on which side (left or right) 

of the box the stimulus was turned off in order to be 
allowed to obtain a food reward from behind the 
matching door after a 2 s delay. In the anticipatory (top-
down) paradigm the animals received a 1 s cue: light 
flash or a white noise auditory signal delivered in front 
of the box. After 8–14 s the 1 s visual or auditory target 
stimulus was delivered at one of the doors, indicating 
the placement of a food reward, to be obtained also with 
2 s delay. The learning procedure ended when the 
animals performed the tasks with 90% accuracy. The 
active beta range in cats’ attention experiments, 16–24 
Hz, was filtered out from the LFP signals recorded from 
two to four chronic electrodes implanted in the primary 
visual cortex. The correlations between the filtered beta 
signals recorded during stimulus presentation (in the 
bottom-up paradigm) or anticipation (in the top-down 
paradigm) in attentional visual trials were referenced to 
beta correlations during similar periods in auditory 
trials. 

3. Computational model 

3.1. Neuron types 

Our neuronal network consisted of single compartment 
excitatory (E) and inhibitory (I) cells modeled with 
extended Hodgkin-Huxley dynamics. Excitatory 
neurons corresponded to regular spiking cortical cells 
while the firing of inhibitory neurons simulated fast 
spiking cortical interneurons. The E neurons exhibited 
firing adaptation at the beginning of the injected 
depolarizing current, while the I neurons were 
characterized by a higher firing rate and a lack of 
adaptation in response to the injected depolarizing 
current. The model equations and parameters for the 
two different types of cells (regular spiking and fast 
spiking) were based on the earlier modeling study,20 
where single cell behavior was presented. 

3.2. Network architecture 

The columnar architecture of the cortex is characterized 
by cortical patches, which are aggregations of cells up 
to within 500 µm diameter.21, 22 Accordingly, in the 
model we grouped the cells into 16 columns arranged in 
a two-dimensional matrix, with the inter-columnar 
centers spaced 1 mm apart (double the 500 µm column 
diameter) (Fig. 1A). The individual columns consisted 
of single layer neuronal networks with both E and I 
cells, the excitatory cells being four times more 
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numerous than inhibitory. Such a proportion of E and I 
cortical neurons roughly corresponds to histological 
data21 and is commonly used in computational models 
of the cortex.23, 24 Nevertheless, such an approach is a 
significant simplification, as different neuron classes of 
both excitatory and inhibitory cells with different 
biophysical properties are known to exist in the 

cortex.25, 26 
In order to create a model that matches real cortical 

wiring we began with experimental data on neuron and 
synapse quantities in the primary visual cortex of cats. 
Next, we estimated the total number of neurons and 
connections that corresponded to a single cortical 
column. In our calculations we treated all cortical layers 
as one ensemble and summed number of connections 
across all layers. In this way we got simplified pattern 
of connectivity as if the density of different types of 
cells (E or I) and synaptic connections would be 
uniform within a cortical column. Then, we scaled down 
the number of neurons and connections. Finally, we 
computed the number of convergent connections that 
were assigned to each neuron in the model.  

In cats the total number of neurons for all six 
cortical layers in area V1 is about 34! 106 neurons per 
339 mm2 area of cortical surface.27 Accordingly, the 
neuron density in a cat’s primary visual cortex is 
approximately 1! 105 per 1 mm2, with a density 
0.8! 105 per 1 mm2 for E cells and 0.2! 105 per 1 mm2 
for I cells. Assuming that a column’s area can be 
approximated by the area of a circle with a diameter of 
500 µm (~0.2 mm2), a single column would contain 
16,000 E cells and 4,000 I cells. In order to meet 
available computational power we scaled down the 
number of neurons using the ratio ξ=1/40. As a result, a 
single cortical column in the model contained 400 
excitatory and 100 inhibitory neurons while the whole 
network of 16 cortical columns contained 6,400 
excitatory and 1,600 inhibitory neurons. 

3.3. Synaptic connections 

According to experimental data,27 the number of 
synapses connecting different classes of neurons, that is,  
E→E, E→I, I→E and I→I, in all layers of a cat’s area 
17 are 13.6! 1010, 2.1! 1010, 2.4! 1010 and 0.4! 1010, 
respectively. Additionally, according to Ref. 28, the 
majority of excitatory connections are long-range, as 
74% of synapses are made by neurons that are located 
more than 500 µm away. In order to estimate the 
number of synapses within a single cortical column, the 
connection numbers were scaled down by a ratio of the 
area of the column divided by the area of V1, which 
resulted in 78.8! 106 E→E synapses (out of which 
19.7! 106 were assigned as local), 12.2! 106 E→I (out 
of which 3! 106 were local), 13.9! 106 I→E, and 
2.3! 106 I→I.  

 

Fig. 1.  A schematic view of the connections between columns 
(A) and within a column (B), of the model. A: the network 
consists of 16 columns arranged in a 4! 4 matrix with a 1 mm 
inter-column distance (center to center) and a column diameter 
of 0.5 mm. The connections between the columns are only 
excitatory: E→E, E→I (E-Excitatory, I-Inhibitory). They are 
created exclusively between neighboring columns. Exemplary 
outgoing connections from a single column are shown in the 
diagram. B: each column consists of excitatory and inhibitory 
neurons, with all possible connection types within and 
between neuron types: E→E, E→I, I→E and I→I. Excitatory 
connections are marked with bars, inhibitory ones, with 
circles. C: A schematic visualization of the network composed 
of 16 columns with excitatory (red) and inhibitory (blue) 
populations. For the purposes of image clarity only convergent 
connections are shown for randomly picked single excitatory 
neuron, and the depth of the layer was extended for better 
readability.  
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Within a single column we modeled all the 
possible types of connections: E→E, E→I, I→E and 
I→I (Fig. 1B). The excitatory connections within the 
column consisted of only 26% of all excitatory synapses 
according to the experimental data.28 The connections 
between different columns were only excitatory. For the 
sake of simplicity we decided to neglect the inhibitory 
connections between columns as inhibitory connections 
are most commonly found to be local. In the analyzed 
brain tissue, only 34% of the total number of inhibitory 
synapses originate from neurons that are located more 
than 250 µm away, and the number falls below 20% for 
the neurons located more than 500 µm away.28 The 
connection numbers were scaled down by a factor of ξ2, 
resulting in 31 excitatory and 22 inhibitory connections 
converging on each E cell, and 20 excitatory and 15 
inhibitory connections converging on I cell within-
column. The inter-columnar connections (Fig. 1A) were 
comprised of E→E and E→I connections, which are 
assumed to exist only between adjacent columns. As a 
result of scaling by a factor of ξ2, each of the E and I 
neurons received respectively 92 and 59 excitatory 
inputs originating in neighboring columns.  

The synaptic connections included fast ionotropic 
excitatory AMPA and inhibitory GABAA type 
receptors. Post-synaptic currents were described by a 
double exponential function. The rise and decay times 
for excitatory postsynaptic currents (EPSC) were 0.5 ms 
and 5 ms, and for inhibitory postsynaptic currents 
(IPSC), 0.5 ms and 2 ms. The value of synaptic current 
was proportional to synaptic weight w, time-dependent 
conductance g, and the difference between cell 
membrane potential V and the reversal potential Esyn; 
obeying the equation 

 Isyn (t) = w ! g(t) ! (V (t)" Esyn ).  (1) 

The relative connection weights were assigned to 
3.5, 14, -70, -70 for E→E, E→I, I→E and I→I, 
respectively. The weights of the inhibitory synapses 
were higher since these synapses are predominantly 
located closer to the cell soma.29, 30 For the chosen 
weights and conductances the EPSP amplitudes (for 
E→E connections) were +0.3 mV, and the IPSP 
amplitudes (for I→E) were -1.5 mV, in response to a 
single presynaptic spike. The neuronal delays between 
two coupled neurons were calculated assuming an 
axonal propagation speed equal to 0.8 mm/ms,31 and a 
synaptic delay equal to 0.5 ms.32 For these values,  

delays for the short-range connections were within 0.5–
1.5 ms range and for the long-range connections within 
0.9–2.0 ms range. 

3.4. Inputs 

We equipped the modeled cortical neurons with three 
kinds of inputs; these represented the following: the 
activation from the higher order cortical regions (IC and 
Icomm), the background input from the thalamus (IB), and 
a specific visual input (IS) from the thalamus. The inputs 
are described below and their arrangement is shown in 

 

Fig. 2. A schematic representation of the external inputs. A: 
Cortical and common inputs, IC and Icomm, from higher cortical 
areas to excitatory cells in V1 (blue line). B: Background input 
IB from the thalamus arriving at both excitatory and inhibitory 
cells (green lines). C: Specific visual input, IS, from the 
thalamus reaches both populations of excitatory and inhibitory 
cells from the retinotopically targeted column and inhibitory 
interneurons of the adjacent columns (green lines). WCE, WBI, 
WBE, WSE, WSI and WSL denote the respective connection 
weights associated with each type of input as described in the 
text. E - excitatory, I - inhibitory. 
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Fig. 2.  

Cortical input 

The cortical input, IC,, was modeled as independent and 
identically distributed (ʻiidʼ) Poisson spike trains 
arriving at each of the excitatory neurons (Fig. 2A). It 
had a synaptic weight WCE equal to 3.7, and was 
adjusted such that, together with the selected value of IC, 
the neurons fired at low firing rates (<10 Hz) and the 
network produced beta oscillations seen also in the 
experimentally recorded LFP signal. The inputs to 
cortical neurons from the higher order cortical areas can 
be partly correlated, for example, due to the divergence 
of incoming cortico-cortical connections (see Ref. 33, 
Chapter 34). Such correlated inputs may have a strong 
impact on the measured correlations between LFP 
signals recorded at two cortical sites.34 To account for 
the relatively high spatial correlations in the 
experimental data, it was necessary to introduce a 
fraction of cortical input, consisting of the same Poisson 
spike train, arriving at each excitatory neuron. This so-
called common input Icomm had the same weight WCE as 
the IC input.  

Thalamic background input 

The thalamic background input, IB, was also modeled as 
‘iid’ feeding each of the E and I neurons (Fig. 2B). The 
IB input was given synaptic weights WBE for excitatory 
neurons and WBI for inhibitory neurons, equal to 2.0 and 
1.0, respectively. The thalamic connections to excitatory 
neurons were stronger than to inhibitory ones based on 
anatomical data27 and were similar to other 
thalamocortical models.35 

Specific visual input 

The specific visual input, IS, provided activation for both 
excitatory and inhibitory neurons in the target columns, 
as well as the inhibitory populations of the adjacent 
columns (Fig. 2C). This type of connectivity pattern is 
responsible for the lateral inhibition mechanism at the 
cortical level.36 IS was modeled as a single realization of 
the Poisson spike train. The IS input was given synaptic 
weights WSE for excitatory neurons and WSI for 
inhibitory neurons, equal to 2.0 and 1.0, respectively.  
The weight of the specific-lateral connection, that is, of 
the IS input arriving at inhibitory cells in the adjacent 
columns was set to WSL = 0.4. This value appeared to be 

optimal for modulating beta power in the surround, 
while preserving population activity. Higher weights 
resulted in a significant reduction in spiking in adjacent 
populations, while lower weights produced too subtle 
effect. 

It should be noted that in general the thalamus 
receives strong cortical feedback. In our model we 
didn’t include such reciprocal connections between the 
thalamus and cortex. Instead we model stationary states 
of the network, in which feedback has stationary values 
that are accounted for by appropriate setting of the 
inputs.  

3.5. Definition of states  

In order to be able to compare the modeling results with 
the experimental data, we introduced into the model 
three states that corresponded to different experimental 
conditions. The reference (Ref) state of the model 
corresponded to the experimental auditory task. Under 
these conditions we assumed a moderate strength of 
external cortical input to the visual cortex, background 
thalamic input at its reference value and the absence of a 
specific thalamic visual input. The parameter settings 
for this state were as follows: IC = 300 Hz, IB = 210 Hz 
and IS = 0. For these parameter values we observed 
weaker beta band activity in the modeled LFP signals 
(see paragraph 3.6 below). The anticipatory attention 
(Ant) state of the model corresponded to the 
experimental situation in which a cat was attentively 
staring at the front wall of the cage waiting for the 
visual stimulus to appear, yet without any stimulus 
present. Accordingly, we modeled this state using an 
increased external cortical input, the background 
thalamic input at its reference value, and an absence of 
specific thalamic visual input. For this state the 
parameters were as follows: IC = 320 Hz, IB = 210 Hz 
and IS = 0. With these settings a clear peak in the beta 
range was observed in the spectrum of modeled LFP 
signal. The stimulus-driven attention (SD) state referred 
to the experimental situation in which a cat actively 
fixated and followed the visual stimulus. In this state the 
cortical and background thalamic inputs were the same 
as for the anticipatory attention state, and thalamic 
sensory input was added to the target columns. Here we 
present the results of the sensory input arriving at two 
central columns (out of 16 total). This shows most 
clearly the inhibitory surround effect in the 10 
neighboring columns. This effect diminished but was 
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still present when sensory information was passed to 
one, or more than two columns. Parameter settings for 
the SD state were as follows: IC = 320 Hz, IB = 210 Hz 
and IS = 420 Hz. Each of the stimulated columns was 
fed by an individual Poisson spike train. For these 
parameter values we observed a strong beta signal in the 
target columns and weaker beta band activity in the 
neighboring ones. In all three attentional states 
described above, the common cortical input, Icomm, had a 
mean rate of 80 Hz (25% of the IC value in the Ant and 
SD states). As the Icomm was identical in all simulated 
paradigms, it could not account for the differences in 
spatial correlations produced by the model in different 
states. 

3.6. LFP   

It is generally assumed that local field potential (LFP) 
activity mainly reflects synchronized postsynaptic 
potentials (e.g., Ref. 37). Furthermore, in real neurons, 
synaptic actions generate a paired sink and source for 
the current, which can be approximated by an electric 
dipole.38 The largest contributions to LFP come from 
pyramidal cells due to the large spatial separation 
between their current sinks and sources, anatomical 
order, and temporal synchrony.39 Accordingly, the local 
field potentials were modeled as the sum of both the 
excitatory and inhibitory synaptic currents for all the 
excitatory neurons in a single column. Additionally, in 
order to account for the dipolar distribution, the synaptic 
currents were scaled using the function ~1/r2, where r 
corresponds to the distance between the synaptic current 
and point of measurement. The simulated LFP 
electrodes had a diameter 100 µm and were located in 
the center of each column, 50 µm above the neuronal 
layer. As a consequence, 16 LFP signals were obtained 
from the whole network.  

3.7. Computational environment  

The model was simulated by means of the PyNEST 2.2 
package40 and its extension, which included a custom-
made implementation of specific cell types: regular and 
fast spiking neurons. The Euler forward method was 
used for the numerical integration routine with a time 
step of 0.01 ms. Typical 11 s simulation of a 4 × 4 
column model took four hours to run on a 2.0–2.8 GHz 
AMD or Intel processor. All post processing was 
performed in a Linux system with Python 2.7 and 
version 0.13 of Scipy. 

3.8. Data analysis  

For the purposes of signal analysis, the membrane 
potentials or synaptic currents were recorded at a 1 kHz 
sampling rate. In order to estimate power spectral 
density, the Welch method was applied using a Hanning 
window with a length of 512 samples. Action potentials 
were detected based on neuron membrane potential with 
the threshold set to 0 mV. The instantaneous population 
firing rate is the time series that represents the number 
of spikes of all neurons within the population, fired 
within 2.5 ms time bins (see example in Fig. 5B). 

In order to reduce the high frequency component, 
simulated LFPs were digitally filtered using a fifth order 
Chebyshev type II low-pass filter, with no phase shift 

 

Fig. 3.  A: the dependency of a power spectrum of LFP on 
mean external input strength. B, C: the dependency of power 
spectrum of the time series of Excitatory and Inhibitory 
population firing rates on mean strength of the top-down 
input. Mean firing rates for exemplary E and I neurons are 
marked with magenta on the respective plots. Colorbars 
represent spectral power values of the LFP signal in dB. 
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and a minimal attenuation of 30 dB for frequencies 
above the 94 Hz frequency range. For correlation 
analysis the signals were additionally band-pass filtered 
without phase shift, by means of fourth order 
Butterworth filter with half-amplitude cut-off 
frequencies of 16 Hz and 24 Hz.  

The correlation analysis was analogous to that in 
the experimental work,19 that is, simulated LFPs were 
first filtered in the beta range (16–24 Hz) and, 
subsequently, the unbiased cross-correlation function 
was computed. Finally, the maximum for the cross-
correlation function within the limited time lag around 
zero (-1 s, +1 s) was chosen as the correlation value. 
This measure is unfortunately sensitive to the duration 
of the signals: shorter signals tend to give higher values 
than longer ones with the same properties. In our work 
we addressed this problem by setting the time of all 
simulations to 10 s and omitting the first 2 s from the 
computations to remove the possible influence by the 
initial conditions. Correlations were computed for all 
possible pairs for the 16 signals and the resulting 120 
values were presented on scatter plots or in boxplots for 
comparison with in-vivo correlation measurements 
between different electrode pairs. 

4. Results 

4.1. The influence of a noise mean rate on 
network frequency 

We first investigated how the LFP oscillation peak 
frequency in a single column depended on the cortical 
input rate. We performed series of simulations and 
varied the mean rate of the IC input in the range 100 Hz 
– 3 kHz in steps of 20 Hz, 100 Hz, and 500 Hz, as we 
used more dense representation for lower input rates. 
During the analysis other inputs were at their reference 
values, i.e., IB = 210 Hz and IS = 0. The dependence of 
the LFP power spectrum on the mean input noise rate is 
presented in Fig. 3A, while Fig. 3B and C show the 
impact of input strength on the power spectrum of the 
instantaneous population firing rate. Additionally, the 
mean firing rates of individual E and I neurons are 
shown in Fig. 3B and C using a magenta line. The LFP 
oscillations emerge from alpha frequencies (around 10 
Hz) and increase in frequency through the beta range 
(around 20 Hz) up to a slow saturation around the 
gamma frequencies (40 Hz; Fig. 3A). Figure 3B and C 
reveals that the frequency of LFP activity corresponded 

very accurately to the frequency of the instantaneous 
firing rates of both populations of cells (E and I). 
Additionally, due to nonsinusoidal shape of the 
instantaneous firing rate signal, second harmonic 
component is also present in Fig. 3B and C. At same 
time, individual neurons’ firing rates were rather 
independent on the LFP frequency. Single cell 
frequencies of both cell types increase linearly with the 
external input strength, but they don’t correspond to the 
population rhythm. 

 

Fig. 4.  The dependency of the LFP’s power spectrum on the 
mean external input strength with, (A) excitatory to excitatory 
connections removed; (B) reciprocal connections removed; 
and (C) inhibitory to inhibitory connections removed. On the 
same plots the single E (solid line) and I (dashed line) neuron 
mean firing rate is marked with magenta. The color bar 
represents spectral power values in dB, of the LFP signal. E-
excitatory, I – inhibitory. 
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4.2. The role of connection types between 
populations 

In order to determine which connection types were 
crucial for generating synchronized oscillations in the 
network we modified the network by selectively 
disabling individual connection types and then observed 
the reduced network behavior for a range of external 

input strength values. Removing excitatory to excitatory 
connections (Fig. 4A) did not affect the frequency of 
network oscillation, which remained in the beta-gamma 
range. Removing excitatory to inhibitory connections or 
removing inhibitory to excitatory connections (Fig. 4B) 
led to the deactivation of inhibitory cells and the 
independent activity of excitatory neurons. The 
oscillations that emerged consisted of highly 
synchronous bursts generated by the E neurons at 
around 10 Hz frequency. The highly synchronized 
activity produced a regular oscillation in the LFP signal, 
which was characterized by multiple harmonics in the 
power spectrum, as can be seen in Fig. 4B. Removing 
inhibitory to inhibitory connections (Fig. 4C) slowed 
down the oscillation in comparison to the intact 
network. The excitatory neurons fired at similar firing 
rates below 20 Hz, while disinhibited inhibitory neurons 
fired faster, reaching 60 Hz for maximal external drive. 
Multiple harmonics in the power spectrum, seen in Fig. 
4B and C, originated most likely due to the fact that 
analyzed signals had complex waveform that couldn’t 
be represented by a single sine wave.  

The simulations described above suggest that 
beta/gamma oscillations may be dependent on the 
reciprocal interactions between E and I neurons. 
However, in simulations without the E→I connections, 
the interneurons did not receive excitatory input and 
therefore remained inactive, which in turn led to the 
abolition of beta/gamma oscillations. To verify whether 
the lack of beta/gamma activity was due to the lack of 
the overall inhibition of the E network or specifically 
due to the lack of reciprocal interactions between 
excitatory and inhibitory neurons, we performed an 
additional simulation without the E→I connections, but 
with the activity of I neurons triggered by external 
Poisson spike trains applied to every I neuron. The 
external input to I neurons was adjusted in order to 
produce a firing rate at 5.5 Hz, the same as observed 
during the beta activity in the intact network. Under 
these conditions the network generated synchronized 
bursts of activity that resembled the activity generated 
in the purely excitatory network. This allowed us to 
conclude that the recurrent interactions between E and I 
cells were crucial for generating beta/gamma activity in 
the model.  
 

 

Fig. 5. A: Raster-plot showing spikes of inhibitory (I, in blue) 
and excitatory neurons (E, in red) in the single column of the 
model. B: Instantaneous firing rates of both populations 
computed in 2.5 ms time bins. Oscillations around 20 Hz are 
visible at the population firing level. The increase in the 
excitatory firing rate (red) precedes the increase in the 
inhibitory spike rate (blue). C. Simulated LFP signal. 
Oscillations at the frequency of 20 Hz are clearly visible in the 
LFP, with the most evident beta cycle marked in grey. D: The 
power spectrum of the LFP signal and of the time series of 
excitatory and inhibitory instantaneous population firing rates. 
Spectra were normalized to have the same amplitude in order 
to visualize the spectral peaks. The spectra of all three signals 
exhibited their most prominent peak in the beta frequency 
range (~ 20 Hz). 
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4.3. Beta oscillations 

Based on above results, we set the cortical input, IC, to 
320 Hz in order to simulate the beta band activity during 
top-down attention. The typical activity of the cells 
from a single column during a 1 s simulation is 
presented in Figure 5. Figure 5A shows the raster plot of 
the spike occurrences for all neurons in the column. The 
instantaneous firing rates are shown in Fig. 5B, while 
the simulated LFP signal is shown in Fig. 5C. The 
power spectrum of the LFP signal exhibited a clear peak 
in the beta band (~20 Hz; Fig. 5D, blue line). Analogous 
beta peaks are visible in the power spectra of the time 
series of E and I population firing rates (Fig. 5D, red 
and blue lines). 

4.4. Cross-correlations in vivo and in the model 

Experimental cross-correlations 

In Fig. 6 A and B, spatial beta correlations observed 
experimentally during the stimulus-driven (n = 11) and 
anticipatory (n = 14) visual paradigm are plotted against 
the correlation values obtained in the reference state 
(auditory paradigm), for individual electrode pairs. It 
can be seen that in the SD paradigm, attentional 
modulation strongly attenuated (in comparison to those 
obtained in the reference state) the spatial correlations 
that were relatively weak (<0.6), while those that were 
relatively strong remained unchanged (Fig. 6A). In the 
Ant paradigm the spatial correlation values (even below 
0.6) were similar to those in the reference state (Fig. 
6B). Accordingly, the lower correlation values deviate 
downward from the diagonal in the SD experiment’s 
scatterplot (Fig. 6A) but remain close to diagonal for the 
Ant paradigm (Fig. 6B). 

Simulated cross-correlations 

Fig. 6 C and D show the simulated cross-correlations of 
the beta signals from all available pairs (n = 120) of 
activities in spatially different cortical sites. The 
observed scatterplots are similar to those described 
above in the in vivo conditions. In the modeled SD 
paradigm the cross-correlation values deviated 
downward from the diagonal (Fig. 6C) and in the 
simulated Ant conditions they were located more 
closely to the diagonal (Fig. 6D). In Fig. 6 C and D, the 
correlation value for a given pair of columns is marked 
with a color corresponding to the distance between 
them. The distance color scale is shown to the right of 

 

Fig. 6. The comparison of the cross-correlation results in vivo 
and in the model. A and B. Experimental scatterplots of the 
cross-correlation values for individual pairs of cortical 
recording sites in both attentional states: stimulus driven (A, 
red) and anticipatory (B, blue). Correlation values during 
attentional states in the visual paradigms are plotted against 
the correlation values for the reference (auditory) state. In the 
stimulus-driven paradigm the signals from pairs of recording 
sites with lower correlations in the reference state (0.3–0.6) 
exhibited significant decorrelations in the attentional state, 
while pairs with higher reference correlation values (0.6–0.9) 
had similar values during the visual attentional task. In the 
anticipatory attention paradigm, pairs of signals had similar 
correlation values in the reference state and during the 
attentional task. C and D. Scatterplots of the cross-correlation 
values for individual pairs of columns in the model with 
simulated attentional states: stimulus-driven (C) and 
anticipatory (D). The overall shapes of the scatterplots are in 
accordance with the experimental data. The distance (mm) 
between columns is marked by a color defined by the color bar 
located to the right of the panels. Small distance pairs 
(adjacent columns) exhibit the largest cross-correlations while 
more distant columns yield lower cross-correlations. E and F. 
Quantitative comparison of experimental and simulated cross-
correlation values. Boxplots show the median together with 
the first and third quartile of the cross-correlations while the 
mean is marked with a diamond. Note that the overall trend in 
the means, medians and ranges are comparable in the 
simulated and experimental signals. Asterisks show significant 
differences between the attention and reference state (p<0.05).  
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Fig. 6D. It can be seen that in general in both simulated 
attentional paradigms, the smaller the distance between 
the individual pairs of signals, the higher the correlation 
value between them (Fig. 6 C and D). 

Comparison of mean cross-correlations  

The box plots, which show the mean and range of the 
correlation values, confirm the differences between the 
correlations in the two paradigms. In the stimulus-
driven attentional state the cross-correlation values had 
a lower mean value and a larger range than for reference 
state (Fig. 6E, Experiment). On the contrary, the mean 
value and range of the cross-correlations during the 
anticipatory attention task were similar to the values 
calculated during the reference condition (Fig. 6F, 
Experiment).  

We performed statistical tests to estimate the 
significance of the observed differences in the 
correlation values between the attention and reference 
states in both paradigms. We used the paired Wilcoxon 
test since our data did not follow the normal distribution 
(Shapiro test, p < 0.05). In the experimental data the 
differences were significant only in the SD paradigm (p 
< 0.05). For 120 correlation pairs in the model, we 
observed that the differences in correlation were 
significant in both paradigms (p<0.05). However, the 
test performed is characterized by a higher statistical 
power than that used in experimental data, due to the 
different population sample sizes (120 in the model, 

compared to 11 for the SD and 14 for the Ant in 
experimental conditions). We, therefore, performed 
multiple statistical tests (1000) on randomly selected 
subpopulations, counting 11 (for SD) and 14 (for Ant) 
correlation values. Next, we computed the percentage of 
these tests for which the p-values were less than 0.05. In 
the modeled SD paradigm more than 97.5% of the 
random subpopulations resulted in p-values less than 
0.05, confirming the results obtained with larger sample. 
On the other hand, for the Ant paradigm, only 17.7% of 
the random subpopulations resulted in a p-value less 
than 0.05. Based on these results we conclude that the 
modeled correlation differences between the attentional 
and reference states are in agreement with experimental 
results, which showed a significant effect in the SD 
paradigm but no significant differences in the Ant 
paradigm.  

4.5. Influence of lateral inhibition strength 

To provide further insight into role of lateral inhibition 
in shaping the model’s beta correlations we performed 
additional simulations of the SD paradigm with 
different values of lateral inhibition strength, 
characterized by the weight (WSL) of specific IS input 
arriving at inhibitory cells in adjacent columns. The 
results are presented in Fig. 7. Without lateral 
inhibition, that is, for WSL = 0 (Fig. 7A), the scatterplot 
of the cross-correlations is similar to that obtained for 
the Ant conditions (Fig. 6D). In reference conditions 
corresponding to SD paradigm (Fig. 7B) the cross-
correlation values decreased and deviated downward 
from the diagonal. For strong lateral inhibition, with 
WSL = 1.0, corresponding to the complete inhibition of 
activity in the surrounding regions, the cross-correlation 
values decreased even more and further deviated 
downward from the diagonal (Fig. 7C).  

4.6. Influence of center-surround organization on 
cross-correlations 

In order to better understand the observed general 
decrease in cross-correlations and the strong de-
correlations of specific pairs in SD conditions (Fig. 6C) 
we analyzed the dependence of correlation values on 
spatial organization of the columns that were influenced 
by sensory input. We therefore divided the modeled 
network regions into different categories depending on 
their spatial relation to the stimuli. We defined the 
following: (i) stimulated (center) regions, which 

 

Fig. 7. Analysis of lateral inhibition strength of beta cross-
correlations in the model. A and B. Cross-correlation values 
during the stimulus-driven (SD) attentional state are plotted 
against cross-correlation values in the reference state for 
individual pairs of columns in the model. A. Without lateral 
inhibitory connections, i.e., for WSL = 0, cross-correlation 
values approximate the values obtained in the anticipatory 
attention paradigm. B. Reference SD conditions (same as in 
Fig. 6C). C. For strong lateral inhibitory connections (250% of 
reference value) cross-correlations further decrease and the 
scatterplot points deviate further away from the diagonal with 
respect to the correlations in the reference SD conditions (Fig. 
7B). The color bar represents distance (mm) between the 
columns. 
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received the specific excitatory visual input IS from the 
thalamus, (ii) inhibited (surrounding) regions, which 
received lateral inhibitory inputs, and (iii) regions not 
related to the stimulus. Next, we analyzed how the 
cross-correlation values depended on associations of the 

involved columns with the same or different categories. 
The results of the analysis are shown in Fig. 8. The 
correlations of the columns that were excited or 
inhibited by different inputs are shown in Fig. 8B. It can 
be seen that the correlations between two columns 
belonging to different inhibitory surround regions 
exhibited a moderate decrease in the stimulus-driven 
condition (red points). A similar effect can be seen for 

two stimulated columns (light-blue point). A roughly 
similar decrease in correlations during SD vs. reference 
conditions was observed between inhibited and non-
related columns (Fig. 8C). The strongest decrease was 
observed for correlations between stimulated and non-
related columns (Fig. 8D, red points). Finally, 
correlations between columns of same type (inhibited 
by the same stimulus or not related) were mostly 
unaffected by the visual stimulus (Fig. 8E). 

5. Discussion 

The aim of the present study was to test, in a 
computational model, the neurophysiological hypothesis 
of the mechanism forming different beta activation 
maps in the primary visual cortex as observed in two 
distinct attentional tasks. In the experiment performed 
on cats19 we have shown that the cross-correlation 
values of the beta frequency signals between spatially 
scattered cortical recording sites were similar during 
top-down attentional modulation (anticipatory attention) 
but were considerably different during bottom-up 
attentional modulation (stimulus-driven attention). We 
hypothesized that this effect may be explained by lateral 
inhibitory interactions activated by the process of 
attentive vision. In order to test this hypothesis we 
developed a large scale model of the cortical network 
that was composed of regular spiking, excitatory 
pyramidal cells, and fast spiking, inhibitory 
interneurons, with their connectivity based on available 
anatomical data. Using this model, we simulated three 
different activation states of the primary visual cortex 
that corresponded to the experimental tasks of auditory 
(reference) and visual (stimulus-driven and anticipatory) 
tasks. The model replicated the paradigm-specific beta 
activation maps that were dependent on the lateral 
inhibitory mechanism in accordance with the 
hypothesis. Additionally, we obtained a novel insight 
into the experimentally observed correlation patterns. 
Beta generation, spatial beta correlations, and new 
model predictions are discussed successively below. 

5.1. Beta generation mechanism 

For a wide range of external excitatory input rates (100 
Hz – 3 kHz) the network generated LFP oscillations in a 
wide range of dominant frequencies spanning the 
beta/gamma range (Fig. 3A). To determine beta 
generation mechanism in the model, we performed 
simulations in the intact network and in modified 

 

Fig. 8. Cross-correlations between individual pairs of columns 
in the model divided according to their spatial relation to the 
stimulation site. The different column categories are marked 
with different colors as indicated in topographic sensory 
stimulus map (A). Each scatterplot (B–E) shows the same data 
points, color points correspond to correlations between 
specific categories of columns indicated in the schematic 
topographical plot by color lines (inset); the remaining 
correlations are marked by black points. It can be seen that the 
correlations between the inhibited columns and between 
inhibited and non-related columns exhibit a moderate decrease 
(B and C). The strongest decrease is observed in correlations 
between the stimulated and not related columns (D). 
Correlations between columns of the same type – either 
inhibited or not related – remain largely unchanged (E). 
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networks where connections between the cells were 
selectively removed (Fig. 4). The analysis showed that 
the emergence of oscillatory activity was mediated by 
reciprocal interactions between pyramidal cells and 
interneurons termed pyramidal-interneuron gamma 
(PING) mechanisms.41 PING rhythms are generated 
with synchronous volleys of the excitatory population 
followed by inhibitory ones, as was also found in our 
model (Fig. 5B). The dominant oscillation period is 
strongly dependent on the strength of the external 
excitatory input (Fig. 3A), which controls the recovery 
time following inhibition in excitatory neurons. 
Although PING has been used to explain gamma, and 
sometimes also higher beta, rhythms, that is 20–80 Hz42-

45 frequency range, our modelling results suggest that 
this mechanism may also account for the lower beta 
frequencies below 20 Hz. It has been shown that in the 
cats stimulated by naturalistic video sequences, neurons 
in primary visual cortex fired mainly at low frequencies 
<5 Hz.46 In our model firing rates below 5 Hz 
correspond to synchronized network oscillations below 
20 Hz (Fig. 3B). In our cats attention experiments2 the 
active beta range was 16-24 Hz. Accordingly, in the 
model we set the value of the external attentional input 
at 320 Hz for which a dominant peak about 20 Hz was 
observed in the LFP spectrum (Fig. 5D). 

It can be noted (Fig. 5D) that at low frequencies the 
power spectrum of the modeled signals lacks the typical 
1/f relation observed for spontaneous brain activity.47, 48 
It has been postulated that this phenomenon arises due 
to self-organized criticality49 or due to the dendritic 
filtering of the Poisson spike trains.50, 51 None of these 
processes has been implemented in our model and 
accordingly the spectra of the modeled signals did not 
exhibit this property. However, in both real and 
simulated signals we analyzed only rhythmic activities 
in the beta frequency range and therefore the exact 
shape of the background spectrum should not have 
influenced the results of cross-correlation analysis. 

Another difference between experimental and our 
modeled LFP spectra is single dominant frequency in 
the model, while in the neocortex oscillations at 
different frequencies may coexist. It has been shown 52, 

53 that different cortical rhythms differentially support 
feedback and feedforward processing in the visual 
system. Also it has been reported54 that in the 
neocortical slices interaction between gamma ~40 Hz 
and beta2 ~25 Hz rhythms produced beta1 ~15 Hz 

rhythm by a process called concatenation. In our 
simulations we couldn’t reproduce these results, as they 
require models with more realistic multilayered cortical 
architecture. 

5.2. Spatial beta correlations 

In the model we succeeded in reproducing the 
difference between the spatial beta correlation patterns 
observed experimentally during stimulus-driven and 
anticipatory attention tasks.19 We posit that this 
difference could be attributed to the lateral inhibitory 
mechanism, which is activated by feed-forward 
inhibitory inputs during processing of the visual 
stimulus (bottom-up attention), but which remains 
inactive during stimulus anticipation (top down 
attention) in accordance with the organization of visual 
cortex circuitry.7, 36 Accordingly, anticipatory attention 
results in uniform activation of cortical columns and 
homogenous pattern of inter-column. In contrast, 
stimulus-driven attention leads to an increased 
activation of the target columns and inhibition of 
neighboring columns. The resulting heterogeneity in the 
activation level across neighboring columns in the 
visual cortex increases the variability of the spatial 
cross-correlations. Additionally, the inhibited columns 
decrease internal activity and produce weaker 
correlations together with other columns. It leads to a 
decrease in the overall correlation level with respect to 
the reference state, as shown in Fig. 6E. We also show 
that increasing lateral inhibition strength to non-
physiological values, when activity in inhibited columns 
is completely depressed, decreases the spatial cross-
correlations even further (Fig. 7C). In contrast, when the 
lateral inhibition mechanism is removed (Fig. 7A) the 
cross-correlations patterns in the stimulus-driven and 
anticipatory paradigms are similar.  

5.3. Model predictions 

Beta cross-correlations depend on inter-columnar 
distance  

We found that in the model, in both attentional 
paradigms the distance between the activated columns 
strongly determines cross-correlation values (Fig. 6C, 
D). In the model, this comes from the assumption that 
long-range inter-column excitatory connections reached 
only the neighboring columns. Such connectivity 
pattern mimicked the primary visual cortex, in which 
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connections from neurons more distant than 2 mm are 
significantly less common.55 We therefore predict that a 
similar rule applies to experimental results, namely that 
the cross-correlation values depend on the distance 
between the activated columns. There is indirect 
evidence that supports this prediction. As shown earlier, 
the time lags of the correlograms were shorter for 
strongly correlated pairs and longer for weakly 
correlated ones.19 Time lags might be directly related to 
the distances between columns and axonal conduction 
times. However, they may also depend on the strength 
of functional (not structural) connections. Hence our 
model’s prediction remains to be tested experimentally.  

Beta cross-correlations depend on sensory inputs 
arrangement 

Additionally, we found that in the stimulus-driven 
condition, correlations that were high during the 
reference (auditory) task remained high, while those that 
initially had moderate or lower values, decreased even 
further during the stimulus-driven attention task (Fig. 
6A). We were able to explain this effect in the model by 
dividing the columns into different categories according 
to their spatial relation to the stimuli (stimulated – 
central, inhibited – surrounding and not related). Our 
analysis showed that pairs of signals, which exhibited 
significant decrease in correlation during visual 
attention state, were those pairs that characterized 
activities in columns of different categories (e.g. center-
surround, Fig. 8B-D). Columns that belonged to the 
same category (inhibited or not related) did not exhibit 
decreased correlation values during the SD condition 
(Fig. 8E). These modeling predictions might be tested 
experimentally. To this end, electrode locations could 
be divided into categories (activated, inhibited or not 
related) based on their behavior during the attentional 
stimulus-driven task in relation to the reference 
condition. Next, the beta cross-correlations of columns 
belonging to the same or to different categories might 
be evaluated. We suggest that such reciprocal 
interactions between the model and experiment are 
likely to provide additional insight into the origin and 
role of correlated beta activities during attentional tasks.  
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