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ABSTRACT 

 
This paper presents a novel approach to classification of 
decomp osed cortical evoked potentials (EPs). The 
decomposition is based on learning of a sparse set of basis 
functions using an Artificial Neural Network (ANN). The 
basis functions are generated according to a probabilistic 
model of the data. In contrast to the traditional signal 
decomposition techniques (i.e. Principle Component 
Analysis or Independent Component Analysis), this 
allows for an overcomplete representation of the data (i.e. 
number of basis functions that is greater than the 
dimensionality of the input signals). Obviously, this can be 
of a great advantage. However, there arises an issue of 
selecting the most significant components from the whole 
collection. This is especially important in classification 
problems based upon the decomposed representation of 
the data, where only those components that provide a 
substantial discernibility between EPs of different groups 
are relevant. To deal with this problem, we propose an 
approach based on the Rough Set theory’s (RS) feature 
selection mechanisms. We design a sparse coding- and 
RS-based hybrid system capable of signal decomposition 
and, based on a reduced component set, signal 
classification. 

 

1. INTRODUCTION 
 
Signal decomposition plays a crucial role in analysis of 
Evoked Potentials (EPs) or Event-Related Potentials (ERPs) 
[1], [2]. Among the most popular methods of EP 
decomposition one will find Principal Component Analysis 
(PCA) [3], Independent Component Analysis (ICA) [4], [5], 
[6] or wavelet-based analysis [7]. In general, a common 
way to represent real-valued EPs is via a linear 
superposition of some basis functions. For instance, a 
standard wavelet analysis produces coefficients for 
expressing a signal as a linear combination of “wavelet 
packets.” Bases such as wavelets can provide a very 
useful representation of some signals, however they have 
serious limitations in terms of the number as well as the 
type of the basis functions they employ [7], [8]. 

An alternative and more general method of signal 
representation via transformation uses sparse coding [9], 
[10]. This methodology is based on the assumption that 
the data can be represented by a set of statistically 
independent events (i.e. basis functions). An additional 
conjecture is made that the appropriate form for the 



probability distribution of those events is that they are 
sparse (i.e. the data can be usually described in terms of a 
relatively small number of basis functions). At the same 
time, an overcomplete representation allows for a greater 
number of basis functions than the dimensionality of the 
input signals, which can provide much greater flexibility in 
terms of capturing structures hidden in data [11], [12], [13]. 

However, even if the sparseness of the basis functions 
is accounted for and preserved, the issue of selecting the 
most significant components from the basis set is still 
crucial. This is especially important for signal classification 
applications that use sparse coding as a data 
preprocessing (i.e. transformation) tool. In such 
applications, one is mostly interested in selecting those 
components that provide the best discernibility between 
signals that belong to different categories. 

While a similar idea of data dimensionality reduction 
has already been utilized in a hybridization of PCA and 
Rough Sets (RS) [14], it appears that an application of this 
approach to the sparse coding is quite novel. 

The paper is organized into the following sections: first, 
in Sect. 2, we discuss the utilized data model. Then, in Sect. 
3, we discuss the application of the theory to the problem 
of selecting the most significant components in the sense 
of signal classification while in Sect. 4, the results of our 
numerical experiments based on the approach are 
presented. Sect. 5 provides a short summary. 
 

2. DATA MODEL 
 
The primary step of examining the form of EPs or ERPs is 
to decompose them into parts (i.e. components). Basis 
functions create a domain in which an EP measurement can 
be represented as a vector [1]. 

We assume that each data vector x is described with a 
set of basis functions M weighted by coefficients a, and 
additive noise ε: 

ε+= Max . (1) 

Probabilistic formulation of the problem, presented in 
[15] and [16] is used here to estimate the values of a and 
M. A given data point can have many possible 
representations, nevertheless this ambiguity is removed by 
a proper choice for the prior probability of the basis 
coefficients [9], [10], 
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which specifies the probability of the alternative 
representations. S(ai) is a sparseness term defined as  
S(ai) = βlog(1+(ai / γ)2), where β and γ are scaling factors. 

The neural network model that learns basis functions 
and computes the coefficients values, proposed by 
Olshausen in [10], is used. The coefficients are inferred 

from x by maximizing the posterior probability P(a|x, M), 
which can be expressed via Bayes’ rule as: 

)|(),|(),( MaMaxMx|a PPP = . (3) 

The first term of the right hand side of the proportion 
specifies the likelihood of the signal for a particular state of 
the model (given by M and a): 
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where ZσN is normalizing constant, λ = 1/σ2, and σ is the 
standard deviation of the additive noise. The maximization 
of P(a|x, M) is accomplished via gradient ascent on the 
log-probability which using (3) and (4) is given by: 
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where Maxe −= . The basis functions are found by 
minimizing model’s estimate of the average code length of 
the model L: 

( )Mx |log PL −= , (6) 

where ⋅  denotes average value , and 
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The basis function are found via gradient descent on L: 
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After each learning step the values of basis functions 
need to be rescaled such that their L2 norms are changed 

by the factor 
2

2

σ
ia

, to ensure appropriate variance of 

coefficients values (see [10]). 
 

3. ROUGH SETS-BASED SELECTION OF 
CLASSIFICATION-RELEVANT BASIS FUNCTIONS 

 
Sparse coding provides a very efficient and useful 
mechanism for data transformation. In traditional 
techniques, such as PCA, feature extraction is based upon 
minimization of the reconstruction error and the “most 
expressive” components are selected according to some 
statistical criteria [19], [20]. Sometimes, however, the 
reconstruction error is not so important while feature 
reduction task is crucial. This is especially true for any 
classification problem performed on the new 
representation of the data (i.e. coefficients for a given set 
of basis functions), for which one might be looking for the 
smallest possible set of components that explain all the 
variations between different classes of objects. In terms of 
evoked potentials, for instance, that would not only allow 
for a decomposition of the signals into some meaningful 



components, but also for determination of those among 
them that are the most significant for discernibility 
between different groups of signals. For this kind of 
problems, traditional approaches do not guarantee that 
selected components, as a feature vector in the new 
representation, will be competent for classification.  

One way to deal with this problem, would be to apply 
the theory of rough sets [21], [22], [23]. In this case, 
especially useful will be the concept of reducts, inherently 
embedded in the theory. Intuitively, an application of the 
methodology of sparse coding will yield an adequate and 
detailed model of the input data, whilst the rough sets-
based search for reducts will determine the most 
significant components in that model, in terms of data 
classification. 

The only issue that must be addressed before applying 
rough sets to the search for a reduced set of components 
is the fact that the coefficients of the basis functions are 
real-valued. This problem, however, can be easily solved 
by utilizing some discretization techniques that will 
transform the real values of coefficients into intervals that 
will be assigned ordered, integer values (i.e. labels) [24], 
[25], [26]. 
 

4. EXPERIMENTS AND RESULTS 
 
4.1. Data 
 
In the experiments conducted at the Laboratory of Visual 
System, Nencki Institute of Experimental Biology, Warsaw, 
Poland, a piezoelectric stimulator was attached to a 
vibrissa of a rat [27], [28]. An electrical impulse of 5 V 
amplitude and 1 ms duration was applied to the stimulator 
causing the vibrissa deflection. Evoked Potentials were 
then registered – each of them related to a single stimulus. 

Evoked potentials have been used for many years as a 
measurement of dynamic events occurring in nervous 
systems that accompany and are related to some defined 
sequences of behavior [1]. Based on same previous work, 
a hypothesis about a relation between two components of 
the registered evoked potentials and particular brain 
structures (i.e. supra- and infra-granular pyramidal cells) 
was stated. In order to verify the hypothesis, two 
additional types of stimuli were applied: 1) a cooling event 
applied to the surface of the cortex (allowing to temporarily 
“switch off” some structures of the brain), and 2) a 
supplementary  aversive stimulus – electrical shock 
applied to the rat’s ear (in order to cope with the 
phenomenon of habituation). Main goal of these 
experiments was to investigate those stimuli in the sense 
of their impact on the brain activity represented by the 
registered EPs. 

A single, four-level electrode positioned in the cortex of 
a rat collected the data. The electrode registered brain 

activity in a form of evoked potentials on four depths (i.e. 
channels) simultaneously as described in [27]. Each 
evoked potential was sampled with frequency of 2kHz and 
is described in the database by 100 values. The complete 
database consists of four separate data sets for each of the 
four channels with 882 records in each data set. 

Because of the fact that the third channel’s electrode 
(0.4 mm) was located in the closest position to the granular 
cells (laying in the middle between supra- and infra- 
granular, pyramidal cells – see [27], [28], [29]) and yielded 
the most “representative” perspective at the activity of the 
cortex, quite often this level was acknowledged the most 
meaningful and interesting one and was given particular 
attention. 

 
4.2. Analysis 
 
A sequence of experiments was performed in order to 
verify and analyze the performance of the proposed 
approach. The overall effectiveness of the algorithm, in the 
light of previous findings, was considered. The most 
important issue was to investigate if the sparse coding-
based approach was capable of determining similar 
components to the ones obtained in previous work by 
PCA and ICA (see [29] and [8]). Secondly, it was crucial to 
explore the ability of the system to automatically select 
those of the components that really mattered in terms of 
the discrimination between the registered EPs. Those 
components, were assumed to explain most of the 
differences between EPs in the database (ultimately 
between the normal and cooled potentials). 

The complete set of 882 evoked potentials registered 
on the 3rd channel was used as the input to the neural 
network. Based on the conclusions derived from some 
preliminary work on the same data (i.e. having too many 
basis functions, some of them appeared to be completely 
insignificant – see [8]) the goal of the algorithm was to 
determine a set of 10 basis functions. The graphical 
representation of the computed basis functions is shown 
in Fig. 1. 

It is important to point out that the “polarization” of the 
basis functions is not really relevant, since the coefficients 
can also take negative values. 

 



 
Figure 1: 10 basis functions computed from the complete 

data set (Mx denotes the x-th basis function). 
 
Based on this new representation of the input data (i.e. 

basis functions + coefficients), a rough sets’ search for 
reducts was applied in order to determine the set of 
classification-relevant components. First, however, the 
coefficients were discretized using three different 
discretization techniques – Equal Width Bin, Equal 
Frequency Bin, and Holte’s One Rule Discretizer (for more 
information on these techniques see [24], [25], [26]). After 
the discretization, the Johnson’s algorithm [30], [31] for 
searching for reducts was applied. 

Various configurations of the discretization and/or 
reduction algorithms’ were investigated and one the most 
interesting results are shown in Fig. 2. 

Since the classificatory attribute (i.e. cooling event) 
was only approximately defined in our database, it was 
impossible to directly determine the classification accuracy 
based on the discretized and reduced data. However, the 
most important part of this project was to verify the 
coherency of the results obtained with our approach with 
the results produced by other methods and, based on this, 
improve and extend the process of EP analysis by 
providing an automatic methodology for signal 
decomposition and selection of significant components. 

This goal was successfully achieved since the 
characteristics of some basis functions determined by the 
neural network, were very similar to the first two 
components received via both, PCA and ICA (see [29], 
[8]), and those two basis functions, were always selected 
by the reduction algorithms. Additionally, as it can be 
clearly seen in Fig. 2, after the signal decomposition, the 
system pointed out several components that provide an 
ability to discern between the EPs in the database 
(guaranteed by the reduction algorithm – indiscernibility 
relation holds). 

 
Figure 2: Sample reduced averaged components in the 3rd 

channel (Cx denotes averaged the x-th component). 
Discretization method: Equal Frequency Bin 

Reduction method: Johnson Algorithm (reduct: {C1, C2, 
C5, C6, C8, C10})  

 
In all the experiments described in this section, the 

neural network implemented by Olshausen [32] was used. 
Additionally, the Rosetta system [30] along with some 
authors’ implementations of rough sets were employed for 
the RS-based value discretization and feature 
selection/reduction. 

 
5. CONCLUSIONS 

 
On the basis of the experiments and the analysis described 
above we can conclude that the proposed sparse coding- 
and RS-based hybrid system provides a useful and 
effective tool in terms of classification of evoked 
potentials. Our results, obtained via the methodology of 
sparse coding, were coherent with previous work in terms 
of the signal’s main components. This suggests that this 
approach delivers useful capabilities in terms of signal 
decomposition and classification. On the other hand, the 
system provides a significant extension to the traditional 
approaches thanks to the mechanisms of an automatic 
determination of relevant components, in terms of signal 
classification. 
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