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EEG-neurofeedback (NFB) became a very popular method aimed at improving cognitive
and behavioral performance. However, the EMG frequency spectrum overlies the higher
EEG oscillations and the NFB trainings focusing on these frequencies is hindered by
the problem of EMG load in the information fed back to the subjects. In such a
complex signal, it is highly probable that the most controllable component will form the
basis for operant conditioning. This might cause different effects in the case of various
training protocols and therefore needs to be carefully assessed before designing training
protocols and algorithms. In the current experiment a group of healthy adults (n = 14)
was trained by professional trainers to up-regulate their beta1 (15–22 Hz) band for eight
sessions. The control group (n = 18) underwent the same training regime but without
rewards for increasing beta. In half of the participants trained to up-regulate beta1 band
(n = 7) a systematic increase in tonic EMG activity was identified offline, implying that
muscle activity became a foundation for reinforcement in the trainings. The remaining
participants did not present any specific increase of the trained beta1 band amplitude.
The training was perceived effective by both trainers and the trainees in all groups. These
results indicate the necessity of proper control of muscle activity as a requirement for the
genuine EEG-NFB training, especially in protocols that do not aim at the participants’
relaxation. The specificity of the information fed back to the participants should be of
highest interest to all therapists and researchers, as it might irreversibly alter the results
of the training.

Keywords: artifacts, attention, beta rhythm, biofeedback, muscle control, placebo

INTRODUCTION

In the last two decades, EEG-based neurofeedback (EEG-NFB) received vast popularity in clinical
and paramedical practice, even though the therapeutic usage of this method was precariously ahead
of the careful, systematic examination of its physiological mechanisms, confounding factors and
possible side effects.

The method belongs to a broader category of biofeedback techniques aimed at altering various
physiological parameters such as heart rate (ECG-feedback), muscle tension (EMG-feedback)
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and others. The trainings are based on the assumption that
one can learn to change her/his brain physiological activity
in a chosen oscillatory frequency by virtue of continuous
feedback about its amplitude. On the contrary to research
on brain computer interfaces (BCI) which concentrates on
finding easily detectable and modifiable signals that can be
reliably used by machine control algorithms, the EEG-NFB
training is directed toward lasting changes of brain activity and
behavioral improvement. The trainings aim to induce systematic
increases/decreases of predefined specific EEG frequencies
reflecting particular cognitive or behavioral functions.

The EEG-NFB has been tested as a treatment in a vast
domain of neurological and psychiatric disorders, e.g., epilepsy
(Sterman and Friar, 1972; Kotchoubey et al., 2001), attention
deficit hyperactivity disorder (ADHD; Kaiser and Othmer,
2000; Fuchs et al., 2003; Kropotov et al., 2007), schizophrenia
(Gruzelier et al., 1999; Surmeli et al., 2012) and even in traumatic
brain injury (TBI) and stroke rehabilitation (for the review
of clinical applications, see Yucha and Montgomery, 2008).
In healthy subjects the EEG-NFB has been applied expecting
behavioral and/or cognitive improvements (Arns et al., 2008;
Reiner et al., 2014) and as a supportive training of cognitive
performance in the elderly (Becerra et al., 2012; Staufenbiel et al.,
2014).

All traditionally discriminated EEG bands have been used as a
feedback source, i.e., slow cortical potentials (<2 Hz; Birbaumer,
1999; Heinrich et al., 2004; Strehl et al., 2006; Leins et al.,
2007), theta (4–7 Hz; Egner et al., 2002; Raymond et al., 2005;
de Zambotti et al., 2012), alpha (8–12 Hz; Egner et al., 2002;
Raymond et al., 2005; Zoefel et al., 2011; Gruzelier et al., 2014),
lower and higher beta (12–30 Hz; Cannon et al., 2009; Egner
and Gruzelier, 2001, 2004) and gamma (>30 Hz; Keizer et al.,
2010a,b; Staufenbiel et al., 2014). This large diversity of protocols
(i.e., sets of frequency bands used to up- or down-regulate
their amplitudes or their ratios) resulted from a belief that each
frequency range is related to some specific cognitive functions.
Even though instances of such frequency-to-function mapping
have been documented (Wróbel, 2000, 2014; Wang, 2010;
Anguera et al., 2013), their complex interactions do not allow
for simplifying generalizations and require further investigations.
Among others, the beta band has been posited to be an attention
carrier (Wróbel, 2000, 2014), with specific, local increases of
amplitude during attentional tasks positively correlating with
correct performance in animals and humans (Bekisz andWróbel,
1993; Buschman and Miller, 2007; Wróbel et al., 2007; Kamínski
et al., 2012; Gola et al., 2013). The up-regulation of this band
has been applied in more complex EEG-NFB training protocols
as a supplementary treatment in ADHD (e.g., Lévesque et al.,
2006; Leins et al., 2007) and as skill enhancement for sportsmen
and the elderly (e.g., Rostami et al., 2012; Staufenbiel et al.,
2014).

Research focusing on beta and gamma bands confronts
the problem of EEG contamination by muscle activity.
Electromyographic activity recorded on the surface of the skin
is composed of high frequencies with most of the power
concentrating between 20 Hz and 150 Hz (Criswell, 2011).
In consequence, muscles located on the head (e.g., temporal,

occipitofrontal and auricular muscles) or even more distally can
interfere with the EEG, sometimes constituting a majority of
the power in the higher frequencies (Goncharova et al., 2003;
Whitham et al., 2007) and influencing most of the electrodes
on the scalp (Goncharova et al., 2003; Yilmaz et al., 2014).
The relation between these signals is further complicated by the
fact that facial EMG was shown to be sensitive to numerous
cognitive and affective processes, including cognitive load
(Waterink and van Boxtel, 1994; Whitham et al., 2008). Muscle
interference has been widely discussed in the context of EEG
and EMG data analysis (for review see McMenamin et al., 2011;
Muthukumaraswamy, 2013) but is not sufficiently recognized
and controlled in EEG-NFB trainings (see ‘‘Discussion’’ Section
and Enriquez-Geppert et al., 2017). The EEG signal analyzed
offline can be iteratively examined and cleaned of any obscuring
components. However, in the EEG-NFB the signal is analyzed
online and transformed into stimuli immediately fed back to
a trained person. All undetected artifacts modify the feedback
signal. This might cause different effects in the case of various
training protocols and therefore needs to be carefully considered
while designing training protocols and algorithms.

Here we report a particular instance of this problem
concerning the NFB up-regulation of the beta band. Since there
is vast research on clinical and normal population reporting
no control or one with doubtful effectiveness (e.g., Leins
et al., 2007; Gevensleben et al., 2009a,b; Keizer et al., 2010a,b;
Logemann et al., 2010; Meisel et al., 2014; see ‘‘Discussion’’
Section), we conducted an experiment to assess the possible
impact of muscle activity on EEG-NFB results. We applied
the beta up-regulation set-up, commonly used as training
aimed at improving attention (Egner and Gruzelier, 2001;
Vernon et al., 2003; Egner et al., 2004; Logemann et al.,
2010; Ghaziri et al., 2013). Healthy, young participants were
trained to voluntarily increase the amplitude of beta1 band
oscillations (15–22 Hz) recorded from the leads overlying
the areas of the frontoparietal attention network. Examination
of the raw signal revealed in a subgroup of participants a
substantial muscle employment which increased systematically
in the course of the session, mimicking the expected increase
in the beta1 band. If the muscle related effects had gone
unnoticed, the conclusion of our study would have been falsely
positive stating a successful upregulation of the beta1 band.
We discuss the need for proper muscle control for a
reliable NFB training in the light of the current EEG-NFB
literature.

MATERIALS AND METHODS

Participants
Thirty-two male healthy university students, age
m = 21.97 ± 1.88 years (mean ± standard deviation), were
recruited for the experiment. The experiments were approved
by the local ethics committee (Bioethical Committee at the
Military Institute of Hygiene and Epidemiology). All subjects
were informed about the study and gave their written informed
consent for participation in the experiment in accordance with
the Declaration of Helsinki.
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The EEG-Neurofeedback Training
The subjects were randomly assigned to one of the three training
groups: beta plus (B+), aimed at increasing the amplitude of beta1
(15–22 Hz) oscillations (n = 14), beta minus (B�) dedicated
to down-regulation of the beta1 oscillatory activity (n = 6)
and sham (SH) group, receiving pseudo-feedback (generated by
a computer algorithm), unrelated to the brain’s EEG signals
(n = 12). The participants were unaware of their group affiliation
and uninformed about the existence of the sham group to prevent
loss of motivation.

The training sessions were performed using a customized
version of the commercial EEG DigiTrack Biofeedback system
(ELMIKOMEDICAL Sp. z o. o.). Each participant had a personal
code, which was recognized by the program and started group-
dependent feedback protocol. At the user (trainer) level, the
program displayed set-ups only for two groups: beta plus and
beta minus. Sham protocols were run under facade of these
set-ups (half as B+ and the other half as B�). The trainings
were conducted by hired professional NFB trainers. In order
to reduce possible nonspecific effects trainers were instructed
not to additionally motivate the trainees. Over a period of
1–2 months the subjects underwent eight training sessions (one
to two trainings per week). During the session subjects were
seated in a chair in front of a 1700 computer LCD screen (⇠70 cm
from the screen). Each session consisted of 10 blocks of 3 min
duration each. The session started after mounting the EEG
electrodes with a short (ca. 2 min) resting period in order to
accustom the participants with the training situations and screen
the control sample of the EEG signal.

EEG was recorded from F3, F4, P3 and P4 sites in
10–20 standard, with linked ears as a reference and ground
electrode placed at the Pz. Thus, the electrodes were positioned
over the frontoparietal attention network nodes (Gross et al.,
2004; Donner et al., 2007; Siegel et al., 2008). The signal was
sampled at 250 Hz and band-pass filtered between 0.16 Hz and

70Hz, with a notch filter at 50 Hz. A fast Fourier transform (FFT)
spectrogram was computed for each electrode. The feedback
parameter was obtained by averaging the FFT amplitudes over
the beta1 range and across the electrodes. The FFT window of
2.07 s (512 point, giving 0.49 Hz resolution) was sliding with
92% or 77% overlap and, accordingly, the amplitude values
presented to the trainer and used for feedback were updated
with 200 or 500 ms delay. Windows overlap and the feedback
delay varied between subjects (due to two software versions
used in the study) but were constant for each person and
randomly distributed among the experimental groups. There was
no difference in results of participants trained with these two
settings.

The training display consisted of a shooting target presented
in the background and four green dots moving inwards and
outwards along vertical and horizontal axes (Figure 1). The
feedback information about the amplitude of beta1, was provided
by the synchronized movement of the dots in B+ and B�
groups. In the sham group a predefined algorithm controlled
the movement of the dots. When the amplitude changed in the
intended direction (towards the threshold value set manually
by the trainers) all dots moved inwards. The subject’s goal
was to make the green dots meet in the center. To boost
the participants’ motivation and to make the training more
involving additional reinforcements were provided. When the
beta1 amplitude reached 43% of the threshold, the display was
complemented with black rings within the high-scored area
of the shooting target. When the beta1 amplitude reached
75% of the threshold value, a red ring in the center of
the shooting target was presented, signaling achievement of
the goal. The threshold defining the required value of the
beta1 band amplitude was adjusted manually by the trainers
during the session to provide a relatively constant rate of reward,
thus encouraging the subjects to continuously improve their
performance.

FIGURE 1 | Screen-stimulus used for the neurofeedback (NFB) training. Participants’ goal was to move the four dots initially located on the outer edges of the
shooting target to its center. The reward was provided in two steps—when the amplitude of trained band reached over 43% of the pre-set threshold the shooting
target was filled in with black central rings, when it exceeded 75% the dots met in the center and the shooting aim appeared as a sign of successful performance.
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Processing of the EEG Data
Raw EEG data were exported from the DigiTrack environment
to the European Data Format (EDF) and further analyzed
using the EEGLAB software (Delorme and Makeig, 2004) and
self-written MATLAB scripts. The off-line analysis involved
similar preprocessing of the data as the online feedback
computation, to obtain the same frequency bands to those
produced by the EEG-NFB apparatus. The continuous data
recorded during training session were mean corrected and
filtered to remove frequencies lower than 0.5 Hz and higher
than 70 Hz. Notch filtering was applied at 50 Hz. The signal
was split into 1 s epochs, which in turn were searched for
artifacts with the EEGLAB function pop_autorej. An epoch
was rejected from all the channels if any data point in this
epoch exceeded 5 standard deviations from the amplitude of
the signal on any of the channels. The algorithm proceeded
iteratively—if the number of epochs classified for exclusion
exceeded 5% of the data, the procedure was repeated with a more
liberal exclusion criterion (increased by 0.5 standard deviation).
Furthermore, to remove muscle artifacts, for every subject we
removed whole training blocks, in which higher frequencies
(22–45 Hz, referred to in DigiTrack software as beta2 band)
diverged by more than 3 standard deviations from the individual
mean of that participant. The procedure ran iteratively until no
such cases were found. In effect, 3.05% of the data was removed,
including three full sessions (belonging to two subjects). The
FFT analysis was computed separately for each 3 min training
block with a sliding Hanning window 512 points-long with a 92%
overlap.

The visual inspection of the raw signal and the FFT spectra
(performed after all cleaning steps described above) revealed,
that the signals of some participants were dominated by
frequencies above 15 Hz (Figure 2). Since such oscillations
constituted the majority of some participants’ signal, cleaning
algorithms relaying on signal distribution parameters e.g., mean
and standard deviation were unable to detect and reject them
during offline automatic data processing. These signals were
characterized by long sweeps of sharp high frequency oscillations
characteristic for EMG (Criswell, 2011). In these cases, a
typical logarithmic-like shape of the FFT curve was substantially
distorted by an elevation spanning from higher to lower parts of
the spectrum.

Therefore, we asked three independent judges to visually
inspect the raw signals and the FFT spectra from all blocks
and sessions of each participant and to classify the sessions as
contaminated by muscle activity if FFT spectrum was distorted
above 15 Hz in the majority of blocks (Figure 2; Criswell, 2011).
The judges listed the participants who exhibited such a pattern in
more than half of their sessions as muscle employing ones.

To confirm that it is possible to distinguishmuscle-employing
participants from the whole sample in an automated approach
we applied two additional methods of classification: k-means
clustering and logistic regression. For both these methods we
used solely the amplitudes of beta2 as the bases of classification.

When applying the k-means method we asked for two
clusters, to prove that our division into muscle employers and
others is the most prevalent pattern in the data. The analysis
was performed with the use of beta2 amplitudes from all

FIGURE 2 | Examples of the EEG data with and without the EMG contamination. (A) Raw EEG signal from four electrodes used for training. (B) Frequency
spectra (fast Fourier transform (FFT)) averaged for all four NFB electrodes. Each line corresponds to a one 3-min block in the session, with each consecutive block
marked with a brighter color (the darkest line—the first block, the lightest one—the tenth block). On the left: data from an exemplar subject with the EEG spectrum
undistorted in the high frequency range (nMB+). On the right: data from a subject with increased amplitudes at high frequency part of the spectrum identified as
originating from muscle activity (MB+).
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available recordings (10 blocks ⇥ 8 sessions for each subject,
3.05% of blocks were missing, due to previous data cleaning
and were substituted with the average of a given participant).
The algorithm was set to minimize absolute deviations within
clusters by calculating the median along predefined dimensions
(Manhattan distance).

The logistic regression was applied as a supervised
method of data classification. The binary classifier (muscle-
employing/other) was guided by the classification made by
independent judges. Themean beta2 amplitude from all available
recordings for each participant constituted the predictor value.
The regression line, fitted to the data, quantified the relationship
between beta2 amplitude and the probability of belonging to one
of the two categories. The decision criterion was established at a
probability of 0.5.

In addition to the trained beta1 band (15–22 Hz), we reported
on the alpha (8–12 Hz) and beta2 (22–45 Hz) flanking bands, as
they are capable of showing potential specificity of the training
effects.

Statistical Analyses
The amplitude values in each frequency band were averaged
from the four electrodes (F3, F4, P3, P4) to reproduce
the training setup averaging online the amplitudes from all
channels. We confirmed with a three-way ANOVA of group,
session and electrode that there were no significant differences
between individual electrodes with respect to amplitudes of
analyzed bands (no significant effects of electrode or interactions
including this factor, all p > 0.201).

The main goal of the analysis was to compare the effects of
the training in the participants employing and not employing
muscles in their performance. Themost prominent characteristic
of the muscle-employing subjects was a pronounced elevation
of high frequency amplitudes and their high variability among
different blocks. In order to maintain the relations between
individual subjects, as present in the raw data, we chose to
perform a between-subject standardization (by subtracting the
mean and dividing by standard deviation from all blocks/sessions
across all participants). This procedure performed for each band
separately enables a direct comparison of different frequency
bands as it shifts the values to a common range (z space).
Additionally, to ensure that the observed effects, even if different
in absolute size, are common for the group and not driven by
single cases we repeated our analysis with the within-subject
z-scores (using individual mean and deviation for each subject).

We verified the effects of the EEG-NFB during the course
of the session (the within session effects) and in consecutive
sessions (the between session effects). For the within session
effects, the values for each of the 10 blocks were obtained
by averaging across all the sessions. For the between-session
effects, the values were obtained by averaging all the blocks
constituting each session. The missing session averages (only
3 per all 256 data points in all participants) were substituted
with mean values interpolated from the directly preceding and
following sessions.

Considering the small number of participants assigned to
the B� protocol for the sake of further analyses we decided

to combine it with the sham group to create a single control
condition, further referred to as control group (CON). Before
combining the groups we confirmed with three-way ANOVA
of group, session and band that there were no significant
differences between these groups (no significant effect of
group or interactions including this factor, all p > 0.208).
Since seven participants identified to have a steady EMG
contamination belonged to the B+ protocol (50% of this group),
we split this group into MB+ (muscle-employing participants
from B+ group, n = 7) and nMB+ (participants not employing
muscles fromB+ group, n = 7). Their performance was compared
to the results of the control group (CON, n = 18). The three-way
ANOVAs were computed for within and between session effects
with ‘‘time’’ (blocks 1–10 or sessions 1–8), ‘‘band’’ (alpha, beta1,
beta2) as within subject factors and training ‘‘group’’ (MB+,
nMB+, CON) as between subject factors. The Greenhouse-
Geisser correction (G-G) was applied when the data did not
meet the sphericity. We considered the results to be significant
when the p value was below 0.05. For significant interactions
post hoc pairwise comparisons were provided. For clarity of
the presentation, from multiple pairwise comparisons between
consecutive time points, we show the comparison of the first and
the last blocks/sessions and prove the gradual character of the
change by fitting a linear trend.

Self-Reports
After completing the training the participants were asked to
assess: (1) the effectiveness of the NFB training; (2) the influence
of the training on their functioning outside the sessions; (3) their
ability to evoke the state from the trainings outside the sessions;
(4) their progress in the ability to control visual stimulus during
the trainings; and (5) their implemented strategies (if any).

RESULTS

Electroencephalographic Data
Fourteen healthy subjects took part in eight sessions of the
EEG-NFB training that aimed to up-regulate the beta1 band
amplitude. Another 18 participants who underwent the
same training regime but were not rewarded for increasing
beta1 amplitude formed the control group to account for the
unspecific training factors.

To assess the possible impact of muscle activity on the
EEG-NFB results we divided the participants into subgroups
based on the presence of the extended muscle contamination
in their EEG signal. To assure the validity and consistency of
the ensuing division three different classification methods were
used. Based on the screening of the raw signal and the shape
of the FFT spectra competent judges marked nine subjects as
muscle-employing. Their assessments agreed in 91% of cases
(eight participants were identified by all three judges, and one
by two judges).

K-means clustering with assumed two clusters divided the
data into groups of eight and 24 participants. Eight out of
nine subjects marked as muscle-employing during the visual
inspection were classified as such by the k-means algorithm (see
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FIGURE 3 | Automatic classification of the participants based on
beta2 amplitude: k-means (main graph) and logistic regression (insert).
In the main graph the light and the dark gray dots correspond to the values of
the beta2 amplitude from the single training blocks. The vertical bundles of
dots display all of the training data of the individual participants, which
constituted the basis for k-means clustering. The graph summarizes the
results of the k-means classification: dark gray dots—muscle employing
participants, light gray dots—others. The colored dots (in both graphs)
correspond to the grand average beta2 of the person with red indicating the
participants from the beta up-training group (B+) and blue those from the
control group (CON). The participants are sorted by the increasing average of
their beta2 amplitude. The error bars represent standard deviations. The
embedded graph shows the result of a logistic regression analysis supervised
by competent judges group assignments (code 1—muscle employing
participants, code 0—others). The dotted vertical line marks the decision
criterion. The participants whose grand mean exceeded this value were
classified as muscle employing. Both automatic methods provided concurring
results. Note the ambiguous case which was classified by competent judges
as muscle employing but did not reach the decision criterion in both automatic
classifications (marked on the graph with the arrow head).

Figure 3). All 23 participants judged not to employ muscles
were in the second cluster. The same result was obtained with
logistic regression (Figure 3). The increase in beta2 amplitude
significantly raised the probability of a subject being classified
as muscle employing (� = 25.92; t = 3.87; p < 0.001). It
is worth noticing that while visual inspection was based on
raw signals as well as on the shape of entire FFT spectrum,
automatic classifications, relying exclusively on the amplitude of
beta2 band lead to very similar results, proving that changes in
the high frequencies are the critical feature distinguishing these
two groups. All approaches resulted in the same outcome in
31/32 cases. In the single ambiguous case we leaned toward the
automatic classification and included this subject in the control
group.

We compared the effects of the training on the muscle
employing participants trained to upregulate the beta band
with other groups. The analysis of the within session effects
(Figure 4A) revealed a significant three-way interaction of block,
band and group factors (F(36,522) = 4.23, p = 0.001, ⌘2 = 0.226).
The statistics for the main and the interaction effects are shown
in Table 1. We observed a general increase of amplitudes in MB+
during training session, with the magnitude varying between
the bands. The most pronounced increase was in beta1 (first
block: m = 0.58, last block: m = 1.59, p < 0.001, linear trend at
p = 0.029) and beta2 (first block: m = 0.77, last block: m = 1.81,
p < 0.001, linear trend at p = 0.029). In both of these bands

the amplitudes during entire training session were significantly
higher in this group than in nMB+ or CON (all p < 0.001).
A smaller, yet significant increase was also present in the alpha
band (first block: m = �0.23, last block: m = 0.15, p = 0.001,
linear trend at p = 0.018). The mean alpha amplitude did not
significantly differ between groups (all p > 0.745). MB+ was
the only group that exhibited any amplitude changes during
the training session. All comparisons between the first and the
last blocks, for all bands in the remaining groups turned out
insignificant (all p > 0.361).

In the analogous analysis performed for the between session
effects (Figure 4B) the three-way interaction of session, band and
group factors appeared insignificant (F(28,406) = 1.39, p = 0.215,
⌘2 = 0.087), demonstrating a lack of systematic changes in
the EEG amplitudes across sessions similar to those observed
within sessions. However, beta1 and beta2 amplitudes were
significantly higher across sessions (all p < 0.001) in MB+
(beta1 m = 1.05 ± 1.09; beta2 m = 1.23 ± 1.152) than in
nMB+ (beta1 m = �0.48 ± 0.40; beta2 m = �0.35 ± 0.25) and
CON (beta1 m = �0.53 ± 0.50; beta2 m = �0.40 ± 0.21), as
shown in the significant interaction of band and group factor
(F(4,58) = 6.06, p = 0.004, ⌘2 = 0.295). There was no difference
between groups in the alpha band amplitude (all p > 0.764).

The same analyses performed on the z-scores computed
for each participant separately confirmed the effects previously
observed in the beta1 and beta2 bands. The amplitude of these
two bands increased within session in the MB+ group and did
not change significantly in the other two groups as revealed by
the interaction effect (F(18,261) = 2.38, p = 0.032, ⌘2 = 0.141). The
increase of the alpha amplitude visible in the previous approach
appeared to be equal to the one observed in higher frequencies
after its normalization to the subject-specific variability range.
This is evidenced by the lack of significant differences between
the bands in the MB+ group (interaction of band and group for
the within session: F(4,58) = 0.27, p = 0.827, ⌘2 = 0.018 ; between
session: F(4,58) = 0.31, p = 0.744, ⌘2 = 0.021).

The impact of muscle activity on the EEG spectrum
increased with frequency. However, the training related increase
in amplitude was proportional to the amount of muscle
contamination in the particular frequency. The results showed
that after separating muscle-employing participants from the
group trained to increase beta1 band we were unable to
observe any effects of the NFB training as indicated by no
significant differences between the nMB+ and control group
participants.

Self-Reports
The participants expressed their opinion about the EEG-NFB
trainings on a Likert scale (1—not effective, 5—effective). The
assessment of the effectiveness of the training varied between
groups (F(2,29) = 5.65, p = 0.008, ⌘2 = 0.280). Subjects assigned
to the control group expressed a more positive opinion about
the effectiveness of the training (m = 4.17 ± 0.71) than those
from the MB+ (m = 3.29 ± 0.76) and nMB+ (m = 3.00 ± 1.29).
Consistently, the majority of subjects from the CON group
(13 out of 18) declared that the trainings had positive influence
on their functioning outside the sessions, the same was true only
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FIGURE 4 | Standardized (between subjects, see “Materials and Methods” Section) amplitudes of the three frequency bands in the three training
groups (MB+, n = 7; nMB+, n = 7; CON, n = 18; for statistical significance see “Results” Section). (A) Consecutive 10 blocks averaged across sessions.
(B) Means of eight consecutive sessions. Error bars represent standard error of the mean.

TABLE 1 | Results of a three-way ANOVA with time, band and group factors.

Within sessions Between sessions

F df1 df2 p F df1 df2 p

Time 13.79 9 261 0.000 2.13 7 203 0.112
Band 0.90 2 58 0.368 0.82 2 58 0.391
Group 7.35 2 29 0.003 5.605 2 29 0.009
Time ⇥ Band 2.88 18 522 0.041 0.91 14 406 0.453
Time ⇥ Group 8.58 18 261 0.000 1.45 14 203 0.215
Band ⇥ Group 6.70 4 58 0.002 6.06 4 58 0.004
Time ⇥ Band ⇥ Group 4.23 36 522 0.001 1.39 28 406 0.215

for two out of seven subjects in the MB+ and only two subjects in
the nMB+ group (�2

(2,32)
= 6.03, p = 0.049). About half of all the

participants declared their ability to transfer the state maintained
during the sessions onto other situations (half of the nMB+, two
thirds of the CON and only one person form the MB+ group,
�2

(2,31)
= 5.55, p = 0.063).

There were no differences between the groups in the reported
ability to control the visual stimulus (F(2,29) = 2.26, p = 0.122,
⌘2 = 0.135). All groups declared that their ability to control
the visual stimulus increased during the trainings (CON:
m = 4.33± 0.97, MB+:m = 4.14± 0.69, nMB+:m = 3.43± 1.13).
During the trainings the participants were left without any
specific instruction. In post trainings self-reports, we asked them
if they implemented any strategies to control the visual stimulus.
In all groups the majority of subjects declared to apply some

strategies during the NFB sessions (�2
(2,32)

= 0.169, p = 0.919).
The participants indicated strategies such as: (1) looking at
one point; (2) solving logical puzzles; (3) visualizing places;
(4) relaxing; (5) focusing and calming down; and (6) singing
songs in their minds. Four subjects from the MB+ group and
one from nMB+ mentioned in their reports changing the muscle
tension. Therefore, about half of the participants fromMB+ were
aware of the possibility to use muscle tension to control the
feedback and half were not. However, these numbers are too
small for direct statistical comparisons. The self-aware subjects
had a slightly better opinion about the effectiveness of the
training and perceived ability to control the visual stimulus
than MB+ who were unaware of their muscle employment
(effectiveness m = 3.00 ± 0.816 vs. m = 3.67 ± 0.58, perceived
controlm = 3.75 ± 0.50 vs.m = 4.67 ± 0.58).
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DISCUSSION

In the present experiment performed on healthy adults, we failed
to observe a change of the EEG activity in the trained beta1
(15–22 Hz) band despite the positive reception of the trainings
effects reported by both the trainers and the trainees. However,
we observed extensive muscle employment, which increased
during the training sessions. We argue that in the reported
experiment, in the subgroup of participants the EEG-NFB
training was taken over by the EMG signal, which became
the foundation for incentive-based learning. This conclusion is
supported by reports showing that EMG is more susceptible
to feedback modification than EEG (DeGood and Chisholm,
1977; Maurizio et al., 2013). Indeed, all but one participants
who increased muscle activity belonged to the training group
up-regulating the beta1 band. This group was rewarded for
amplifying amplitude of beta1, which is at the lower edge of
the EMG spectrum (Criswell, 2011). On the contrary, such
excessive artifacts were not present in participants trained to
down-regulate beta1 activity and present only in 1 out of 12
subjects trained in the sham protocol. In that participant the
muscle activity did not change systematically in the course of the
training.

We cannot eliminate the possibility that in the beta1 activity
recorded from the participants identified as the muscle
employing group (MB+) there was also a contribution of a
neuronal origin overshadowed by muscular activity. However, in
the analysis restricted to the subjects who did not employmuscles
for trainings, no modifications in the beta1 range were detected,
suggesting ineffectiveness of the performed EEG-NFB training.
The susceptibility of the beta1 band for the NFB training has yet
to be established with larger sample sizes.

Subjects generally declared that their ability to control the
visual stimulus increased during the course of the trainings.
Surprisingly, the participants from the control group (who did
not show any changes in the EEG during the trainings) were
most positive about the training effects. This counter-intuitive
result may point out the presence of a placebo effect in the NFB
trainings. It acted as if the effect was most pronounced when
undisturbed by real control of the ongoing feedback (the case
of MB+, which was less pleased with the effectiveness of the
NFB). Amajority of participants reported using various strategies
during the trainings. The employment of muscle tension to
control the visual feedback stimulus was reported post-training
by four participants from MB+, the remaining subjects were
unaware of using this strategy or failed to mention it in their
reports. At the beginning of the experiment the participants were
informed about the basic mechanisms of the EEG-NFB e.g., its
relation to the ongoing brain activity. To assure a high quality
of the recorded signals they were asked to sit still, and trainers
intervened whenever they noticed excessive movement or other
type of undesirable behavior. The fact that half of subjects trained
to up-regulate the beta1 band managed to increase their muscle
activity (in half of the cases unwittingly) shows that such behavior
cannot be efficiently controlled and eliminated by trainers alone.

Our experiment strongly supports the need for effective
automatic on-line control ofmuscle activity during the EEG-NFB

trainings, in particular in the protocols aiming to up-regulate
higher frequency bands. Proper muscle control is a requirement
not solely to acquire a high quality EEG signal but primarily
to accomplish a genuine EEG-NFB training. Muscle control
must be recognized as standard part of the NFB procedure,
to successfully prevent participants from unintentionally using
muscle tension to change the signals registered by the EEG
electrodes during the training. Various mathematical algorithms
were proposed and validated as effective in removing the EMG
components from the EEG signal (McMenamin et al., 2011;
Fitzgibbon et al., 2016), however, most of them require high
density multichannel recordings and as such are not applicable
in the case of typical NFB setups. It was also proposed to model,
fit and subtract individual EMG spikes from the EEG channels
(Nottage et al., 2013)—such an approach does not require
multiple recording channels but needs powerful computers and
sophisticated software.

The strategy suggested in NFB guidebooks (Demos, 2005)
is based on the intervention of the trainer, who is expected
to instruct the trainee to relax, adopt a proper, comfortable
position and to avoid muscles contraction. Trainers are expected
to visually screen the recorded EEG and FFT spectra to detect
sweeps of EMG activity and to instruct the trainees to correct
their behavior. While this is the demanded minimum that can be
done without adequate hardware and software support, present
experiment shows that such a strategy may be inefficient at
least in the trainings aiming to up-regulate high frequencies.
Surprisingly, the reports provided by the authors in a clinical
research concerning mostly the NFB applications for ADHD
treatment in children do not refer to the issue of muscle control
(Lévesque et al., 2006; Leins et al., 2007; for review see Lofthouse
et al., 2012). It remains widely neglected also in the research
conducted on healthy participants in which high frequency (beta
and gamma) training is used in e.g., for cognitive improvement
(Keizer et al., 2010a,b; Logemann et al., 2010). The articles
presenting various control procedures are noticeable exceptions
(e.g., Bird et al., 1978; Berner et al., 2006; Hoedlmoser et al., 2008;
Kober et al., 2013; Witte et al., 2013). Based on this research three
main approaches to control muscle activity can be distinguished.

Probably the most common, although only incidentally
described as serving for artifact control, is the usage of multiband
protocols aiming at simultaneous manipulation of two or more
bands, or maximization of their proportion (e.g., up-regulating
SMR while simultaneously decreasing theta and beta2). Rarely
was such protocol claimed as serving for the eye blink (theta)
and muscle (beta2) control (Kober et al., 2013; Witte et al., 2013).
Even though such an approach can be effective in controlling
muscle-related activity it is threatened by physiological invalidity
when the contrasted bands are directly flanking (Ros et al.,
2013). It is highly plausible that (at least) the edges of the
neighboring bands are mutually interdependent and if left
unconstrained, they tend to change their amplitude in the same
direction. The interdependence of the flanking frequency bands
(on the example of theta, alpha and beta) was demonstrated
as moderate to strong (by means of correlation of the within-
subject changes during training, 0.5 < r < 0.7 (Ros et al., 2013).
Thus, implementation of such protocols, although effective for
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the control of muscle artifacts, might lower the effectiveness of
training.

Our study shows that the classification based solely on the
beta2 amplitude proved that the changes in this frequency are a
feature distinguishing the subjects who train based on the EMG
activity from others. Thus, controlling this single parameter is
sufficient to assure good quality of the feedback information. It
can be implemented as an amplitude threshold on one of the
high frequency bands, as the signal of the muscle origin have an
amplitude far bigger than the neuronal one (procedure employed
i.a. by Hoedlmoser et al., 2008). When the signal exceeds this
threshold the participants are left without a reward and the
training is interrupted. This method can be easily implemented
in commercial software, but it does not completely exclude
the risk of under threshold manipulation of muscle tension.
Many of the articles that implement these solutions, report the
use of an amplitude threshold in the range of 100–120 µV
(e.g., Gevensleben et al., 2009a,b; Meisel et al., 2014). Our
data clearly shows that it is perfectly feasible to gain control
over the NFB apparatus with muscle activity in the range of
70 µV or lower (Figure 2). Since different apparatus and online
signal processing settings influence the range of the recorded
EEG values the amplitude threshold should not be generic but
separately calibrated.

Finally, some authors used additional EMG recordings of
facial muscles (Berner et al., 2006), neck-muscles (Bird et al.,
1978) or the chest belt measuring the chest wall movements
(Berner et al., 2006). In these experiments positive feedback was
conditional upon ongoing EMG activity and provided only if
the latter did not exceed established threshold. As this method
unambiguously distinguishes between neuronal and muscular
signals, it is the most precise one but also the most demanding
in implementation (requiring additional hardware and software
facilities and prolonging the preparation time).

Muscle activity can differently influence various training
protocols, so it should be specifically approached with regard
to the training band and behavioral goal. In the case of the
protocols aiming to up-regulate high frequency bands, the EMG
signal can result from a head or upper body muscle strain. It
is especially plausible in trainings focusing on attention (which
constitute many of high frequency protocols, e.g., Egner and
Gruzelier, 2004; Cannon et al., 2006, 2009), as they do not
instruct subjects to relax during the trainings. The situation is
different for the NFB trainings aiming at subjects’ relaxation,

most often related to alpha protocols (e.g., Egner et al., 2002;
van Boxtel et al., 2012). Interestingly, few articles directly
comparing the EEG and EMG feedback employed the alpha
band and have shown that down-regulating the amplitude of
the muscle signal in the EMG-feedback can be equally or
even more effective in increasing the alpha amplitude when
compared to the direct alpha training (DeGood and Chisholm,
1977; Moore et al., 2000). Both these procedures resulted in
subjects’ relaxation as supported by physiological indices such
as heart and respiratory rates (DeGood and Chisholm, 1977).
In this comparison, the EMG training was explicitly described
by participants as easier in the post training survey. Thus,
the EMG-feedback can be considered as a valid replacement
of the EEG-NFB protocols aiming at the alpha band up-
regulation.

We conclude that the activity from the EEG electrodes
might be overwhelmed by the stronger and easier to control
EMG signals, which in turn becomes a foundation for the
feedback reinforcement. This might cause different effects in
various training protocols and therefore needs to be carefully
considered while designing training protocols and algorithms.
Online data analysis and quality of information fed back to the
participants should be of the highest interest to all therapists
and researchers, as any shortcomings at this stage irreversibly
alter the training and cannot be fixed in further offline
data processing. Extensive effort should be undertaken within
the NFB community to develop, validate and implement in
experimental and commercial setups efficient automatic artifact
detection algorithms.
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